Molecular Evolution of piggyBac Superfamily: From Selfishness to Domestication
نویسندگان
چکیده
The piggyBac transposable element was originally isolated from the cabbage looper moth, Trichoplusia ni, in the 1980s. Despite its early discovery and specificity compared to the other Class II elements, the diversity and evolution of this superfamily have been only partially analyzed. Two main types of elements can be distinguished: the piggyBac-like elements (PBLE) with terminal inverted repeats, untranslated region, and an open reading frame encoding a transposase, and the piggyBac-derived sequences (PGBD), containing a sequence derived from a piggyBac transposase, and which correspond to domesticated elements. To define the distribution, their structural diversity and phylogenetic relationships, analyses were conducted using known PBLE and PGBD sequences to scan databases. From this data mining, numerous new sequences were characterized (50 for PBLE and 396 for PGBD). Structural analyses suggest that four groups of PBLE can be defined according to the presence/absence of sub-terminal repeats. The transposase is characterized by highly variable catalytic domain and C-terminal region. There is no relationship between the structural groups and the phylogeny of these PBLE elements. The PGBD are clearly structured into nine main groups. A new group of domesticated elements is suspected in Neopterygii and the remaining eight previously described elements have been investigated in more detail. In all cases, these sequences are no longer transposable elements, the catalytic domain of the ancestral transposase is not always conserved, but they are under strong purifying selection. The phylogeny of both PBLE and PGBD suggests multiple and independent domestication events of PGBD from different PBLE ancestors.
منابع مشابه
PiggyBac-ing on a Primate Genome: Novel Elements, Recent Activity and Horizontal Transfer
To better understand the extent of Class II transposable element activity in mammals, we investigated the mouse lemur, Microcebus murinus, whole genome shotgun (2X) draft assembly. Analysis of this strepsirrhine primate extended previous research that targeted anthropoid primates and found no activity within the last 37 Myr. We tested the hypothesis that members of the piggyBac Class II superfa...
متن کاملpiggyBac can bypass DNA synthesis during cut and paste transposition.
DNA synthesis is considered a defining feature in the movement of transposable elements. In determining the mechanism of piggyBac transposition, an insect transposon that is being increasingly used for genome manipulation in a variety of systems including mammalian cells, we have found that DNA synthesis can be avoided during piggyBac transposition, both at the donor site following transposon e...
متن کاملUse of the piggyBac transposon for germ-line transformation of insects.
Germ-line transformation of insects is now possible with four independent transposable element vector systems. Among these, the TTAA-insertion site specific transposon, piggyBac, discovered in Trichoplusia ni, is one of the most widely used. Transformations have been achieved in a wide variety of dipterans, lepidopterans, and a coleopteran, and for many species, piggyBac transposition was first...
متن کاملUnexpected diversity and differential success of DNA transposons in four species of entamoeba protozoans.
We report the first comprehensive analysis of transposable element content in the compact genomes (approximately 20 Mb) of four species of Entamoeba unicellular protozoans for which draft sequences are now available. Entamoeba histolytica and Entamoeba dispar, two human parasites, have many retrotransposons, but few DNA transposons. In contrast, the reptile parasite Entamoeba invadens and the f...
متن کاملTransposon Invasion of the Paramecium Germline Genome Countered by a Domesticated PiggyBac Transposase and the NHEJ Pathway
Sequences related to transposons constitute a large fraction of extant genomes, but insertions within coding sequences have generally not been tolerated during evolution. Thanks to their unique nuclear dimorphism and to their original mechanism of programmed DNA elimination from their somatic nucleus (macronucleus), ciliates are emerging model organisms for the study of the impact of transposab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2017